
Chapter 45
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and Regional Planning
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Abstract In recent decades, cellular automata (CA) have become popular for evalu-
ating and forecasting urban transformation over time and space, especially in rapidly
developing countries. These models enhance the understanding of urban dynamics
and the complex interplay between land-use changes and urban sustainability. CA
help governments, planners, and stakeholders to predict and evaluate the poten-
tial outcomes of future policy alternatives before making decisions. Thus, CA are
frequently used to create what-if scenarios for policy implementation. This chapter
includes an overview of the basic and state-of-the-art concepts and methods in urban
CA modeling, as well as the latest studies, applications, and current problems. First,
we conduct a systematic review of urban CA modeling to provide critical comments
on previous and recent studies. The basic techniques, including the components of a
basic CA model, modifications for urban modeling, and collection of data sources,
are then provided, along with a classification of different types of urban CA. Finally,
the applications of CA in urban studies and planning practices are presented, as well
as discussions of further research. We also point out the major problems in recent
studies and applications for further research.

A. G. O. Yeh (B) · C. Xia
Department of Urban Planning and Design and Centre of Urban Studies and Urban Planning, The
University of Hong Kong, Hong Kong, China
e-mail: hdxugoy@hku.hk

C. Xia
e-mail: xia2016@whu.edu.cn

X. Li
School of Geographic Sciences, East China Normal University, Shanghai, China
e-mail: lixia@geo.ecnu.edu.cn

© The Author(s) 2021
W. Shi et al. (eds.), Urban Informatics, The Urban Book Series,
https://doi.org/10.1007/978-981-15-8983-6_45

865



866 A. G. O. Yeh et al.

45.1 Introduction

Urbanization is a global issue characterized by continuous urban land expansion and
rural–urban migration (Alcock et al. 2017; Seto et al. 2012). Urban development
has brought social, economic, and technological changes, particularly, in developing
countries,where cities are sprawling at high rates andmetropolitan areas are emerging
(Bai et al. 2012; Shahbaz et al. 2016; Zhou et al. 2004). However, large-scale popula-
tion growth often leads to urban development beyond the carrying capacity of cities.
Most of the urban development in developing countries is in the form of sprawl
in urban fringes, causing many negative consequences to urban development and
the eco-environment at unparalleled scales (Burak et al. 2017;Weeberb 2015). Thus,
research into the mechanisms of urban expansion is of great significance for planners
and governments to enhance their understanding of urban sustainability.

For understanding the complexity of urban systems, cellular automata (CA), that
can provide a powerful simulation tool to predict and understand urban transfor-
mation over space and time, is one of the most prevalent urban modeling methods
in recent years (Aburas et al. 2016; Santé et al. 2010; Musa et al. 2017). CA offer
governments, planners, and stakeholders a tool to forecast and evaluate potential
social benefits and environmental outcomes of urban development before imple-
mentation. CA also advance our fundamental understanding of urban dynamics and
the complex relationships among urban changes, socio-economic development, and
sustainable systems.

CA are a kind of discrete dynamic model with unique advantages for simulating
complex nonlinear problems. CA originated in the 1940s, when S. Ulan and J. von
Neumann considered the possibility of a self-replicating machine. Subsequently,
many scholars undertook further studies of CA and helped with its advancement
(Codd 1968; Gardner 1971). Wolfram (1984) demonstrated the capacities of CA
for modeling complicated natural processes and generating spatio-temporal global
changes through local interactions among components. The application of cellular-
space models in geographic research was first proposed by Tobler in 1979. Then,
the first theoretical approaches of urban CA modeling emerged in the 1980s (Batty
and Xie 1994; Couclelis 1985; White and Engelen 1994). The integration of CA
and geographic information systems (GIS) led to the simulation of real-world urban
development. After the initial wave of urban CA modeling led by Batty, Couclelis,
Clarke, and Tobler, research on urban CA moved to China quickly (Li et al. 2017;
Zhuang et al. 2017). Since the end of the 1990s, Yeh and Li have developed a series
of CA techniques, mainly combining CA with other models and extending cellular
states, neighborhood definitions, and transition rules (Yeh and Li 2001; Li and Yeh
2002a). These models have been successfully applied to solving the environmental
and ecological problems of rapid urban development in China.

The increasing popularity of CA in urban modeling could be largely attributed to
their simplicity, flexibility, controllability, and ability to incorporate the spatial and
temporal dimensions of urban development processes. CA can simulate complex
dynamic urban systems through simple rules that can work with remotely sensed
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data and GIS (Santé et al. 2010; Musa et al. 2017). CA are more convenient than
other models, such as agent-based models, because of methodologies developed in
the past two decades. Another reason why CA have been widely applied in urban
modeling is because CA can be easily integrated with GIS. The integration of CA
with GIS provides a tool for performing complicated computations based on local
information, thus producing better results than differential equations (Musa et al.
2017). However, despite the popular use of CA in urban modeling, errors in input
spatial data sources and uncertainty in policies (Yeh and Li 2006) pose challenges in
using CA to solve real planning problems (Poelmans and Rompaey 2010).

CA are increasingly being used to simulate spatio-temporal urban expansion and
to addressmany environmental problems. However, defining themost suitablemodel
structures for a specific application problem is difficult. To help users who are not
familiar with CA, this chapter provides an overview of the basic and state-of-the-art
concepts and methods in urban CA modeling, as well as the latest studies, appli-
cations, and current problems. The aim of this chapter is to provide an overview
of defining, modifying, and applying CA for urban studies and planning from the
perspectives of cell, cell space, neighborhood, time step, and transition rule, along
with the collection of required data sources. The different types of CA and their
characteristics are described, and the applications and urban issues involved in CA
modeling are presented. These discussions attempt to answer the question, “what can
and cannot CA provide for the modeler?” In addition, the strengths and weaknesses
of CA are identified and common problems of current studies are discussed.

45.2 Methodology and Data Collection

45.2.1 Urban CA for Formulating Urban and Regional
Planning Scenarios

The basic components of CA include cell space, cell, neighborhood, time steps, and
transition rules. In an urban CA model, each component has geographic implica-
tions (Triantakonstantis and Mountrakis 2012). The cell space represents the two-
dimensional geographic space composed of regular cells, and the states of cells
represent different land uses. The core of a CA model is formed by transition rules.
Each cell changes constantly in accordance with its states and the transition rules as
time goes on, which represents the systemic deduction and change from an overall
perspective.

A formal cell can be a regular grid consisting of square cells, which is particu-
larly suitable for computer processing and compatible with remotely sensed data.
Scholars have defined a hexagonal cell space such that the neighborhood could be
homogeneous (Iovine et al. 2005). Besides, a cell space can be three-dimensional to
represent the vertical growth of urban areas. To make the simulation process closer
to the real world, relaxations to the two components are needed. The modified cell
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space can be based on irregular spatial units, such as Voronoi polygons (Shi and
Pang 2000) or graphs (O’Sullivan 2001). Irregular cell space is sometimes presented
as a patch-based space (Chen et al. 2014; Wang and Marceau 2013). The irregular
spatial unit, such as a cadastral parcel or a census block, is usually represented as a
polygon, to reflect land use, population, and economic conditions. Compared with
regular cells, parcels or blocks provide a good representation of reality, but lead to
complicated definitions of neighborhood. Cell space is normally assumed homoge-
neous in standard CA, indicating identical and exclusive cells characterized by their
states. Nevertheless, the great influence of land attributes on land-use changes, such
as transport accessibility or physical conditions, varies the suitability of different
cells for certain land uses. Subsequently, the requirements for a non-uniform cell
space emerge.

As for neighborhood, there are often two kinds of relaxations. In standard CA,
neighborhood is isotropic and homogeneous for each cell (Wu 2002; Xie 1996) and
consists of a fixed set of geometrically closest cells (i.e. Moore neighborhood). In
urban applications, an extended neighborhood is adopted to consider the neighboring
effect of geographic entities (White and Engelen 2000). Neighborhood size can be
extended to a specified distance and a weight can be introduced according to the
distance, to consider the effect of distance decay. If it is based on irregular units,
adjacent units within a certain distance or degree of proximity are used to represent
a neighborhood (Shi and Pang 2000). Another widely acknowledged modification is
to a non-stationary neighborhood, which defines different neighborhood spaces for
different cells (Couclelis 1985). However, this relaxation has been seldom applied
due to the difficulty of implementation and vague geographic meanings.

As the core of CAmodel, transition rules usually entail substantial modifications,
considering the particularities and complexity of specific applications. Original tran-
sition rules only depend on the states of a cell and its neighborhoods. Given that
urban processes are influenced by numerous factors, such as transport accessibility
and physical conditions, urban CA models are modified to consider external effects.
As CA are flexible, transition rules can be defined in different ways according to the
preferences of modelers. Randomness and uncertainty of urban growth, as well as
many urban theories, can be reflected in themodel structure. Besides, in standard CA,
transition rules are static and the same at every time step. However, urban processes
and determinants change over time and space, which leads to the necessity of cali-
brating transition rules based on the specific characteristics of different periods and
areas (Clarke et al. 1997; Geertman et al. 2007; Li et al. 2008). For example, Clarke
et al. (1997) proposed a self-modifying CA in which transition rules vary over time.
The time steps in a formal CA are discrete, which assumes that urban growth occurs
at the same time. Many urban CA models apply time steps of different lengths or
various time steps for different cells to reflect the influence of specific events with
different duration.However, comparedwith other components ofCA, less relaxations
have been implemented for time steps.

The future state of a cell depends on the transition rules and its state in the previous
moment. A standard CA can be mathematically expressed as follows (Ahmed and
Ahmed 2012):
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St+1 = f (St , N ) (45.1)

where t and t + 1 represent discrete time points, St and St+1 represent the states of the
cell at time t and t + 1, respectively, N represents the set of states of neighborhood
cells, and f is a transition rule.

The straightforward nature of standardCA limits the ability to represent real-world
geographic phenomena (Couclelis 1985). To adapt standard CA in urban applica-
tions, the particularities of geographic processes should be included for representing
geographic heterogeneity, which leads to the relaxation of original CA components
(Couclelis 1997). For example, geographic features in the neighborhood can be
embodied in a simplified CA using rule-based structures (Batty 1997; Fig. 45.1):

By integrating CA with GIS databases, a constrained urban CA can be further
developed for formulating planning scenarios. It is assumed that the evolution of real
cities is influenced by a series of complicated factors which can be defined at various
local, regional, and global levels. Some kinds of constraints should be used to regu-
late the simulation to improve modeling performance. Without constraints, urban

Central Cell
{x, y}

Neighbourhood 
Cell

{x+1, y+1}

IF any neighbourhood cell {x±1, y±1} is already developed
THEN p{x,y}=∑ ij∈Ω p{i,j}/8 
&
IF p{x,y} > some threshold value
THEN central cell {x,y} is developed 

where p{x,y} is the development probability for the central cell {x,y}, and 
cells {i,j} are all the cells which form the Moore neighbourhood Ω including 
the central cell {x,y} itself.

(Source: M Batty, 1997)

Fig. 45.1 Neighborhood and basic transition rules of cellular automata
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Fig. 45.2 Constrained CA with GIS and planned development database

simulation will generate patterns as usual based on historical trends. Constraints
can be added into urban CA models to reflect environmental and sustainable devel-
opment considerations. They are the important factors for the formation of ideal-
ized patterns. The generic constrained CA model takes into account not only the
influences of neighboring states, but also a series of economic and environmental
constraints. These constraints may include environmental suitability, urban forms,
and development density (Yeh and Li 2001, 2002; Li and Yeh 2000; Fig. 45.2).

45.2.2 Data Collection and Model Calibration

As a bottom-up model, urban CAmodels are data hungry and usually require a large
set of data input for real-world simulation. Remotely sensed data are often used for
monitoring and measuring alterations and characteristics of land-use changes on the
Earth’s surface. Time series of historical remotely sensed images or land-use maps
with different time phases in the same area can be used for model calibration and
validation. In addition, traffic networks, natural attributes (i.e. elevation), and other
physical factors are commonly used to evaluate the suitability of land for devel-
opment. Land-use plans can provide land-development information, for example, a
planned regional development center, which is crucial for considering the effects of
urban planning on future development. Many studies have used fine socio-economic
data, such as population density, to produce more realistic simulation results.

The data quality of these input data sources is a concern in urban CA applications
(Aburas et al. 2016). Supervised classification is adopted to classify remote-sensing
images into different land-use types: for example, urban and non-urban. Moreover,
GIS software tools are used to create maps with different spatial resolutions for
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Fig. 45.3 Flow chart of urban CA modeling

comparative analysis. Errors and uncertainty can be produced by these common
operations and the input data sources themselves, thus, influencing the results of
urban simulation (Yeh and Li 2006). There are debates on whether urban CAmodels
can provide meaningful results, especially for urban planning, due to inherent errors
and uncertainty. Overall, considering the above two aspects, modelers can follow the
flow chart in Fig. 45.3 to create an urban CA model.

45.3 Types of Urban CA Models

The model developed by Batty and Xie (1994) in Amherst, New York was one of the
first applications of urbanCA in real-world simulation. However, the first widespread
empirical applications of urbanCAwere carried out byWhite et al. (1997) andClarke
et al. (1997). The application of White and Engelen was based on the previous work
of White and Engelen (1993, 1997). In the model of White et al., the transition
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potential of conversion into different land uses is calculated for each cell, which can
be regarded as a function of various factors, including suitability for different land
uses, neighborhood and inertia effects, and stochastic disturbance. Several models of
this functional type were applied to Cincinnati (White et al. 1997), the Netherlands
(Engelen et al. 1999), Tokyo (Arai and Akiyama 2004), Dublin (Barredo et al. 2003),
Lagos (Barredo et al. 2004), and San Diego (Kocabas and Dragicevic 2006). These
applications confirmed the capacity of urbanCAmodels in highly realistic simulation
of urban transformation. Several improvements have been proposed to reinforce the
methodological and theoretical basis of this type of model (Arai and Akiyama 2004;
Caruso et al. 2005). Another application is the SLEUTHmodel, which is an acronym
of the input maps: slope, land use, exclusion, urban extent, transportation, and hill
shade (Clarke et al. 1997). SLEUTH considers four types of growth behaviors, which
are spontaneous, diffusive, organic, and road-influenced. This model is designed to
learn from the feedback of its local settings over time through self-modification, and
its calibration is based on combining different metrics of the goodness-of-fit between
observed and simulated results. SLEUTH has been applied to many cities, initially in
North America (Berling-Wolff and Wu 2004; Clarke and Gaydos 1998; Dietzel and
Clarke 2006; Herold et al. 2003; Yang and Lo 2003), and later in Europe (Silva and
Clarke 2002), South America (Leao et al. 2004), and Asia (Feng et al. 2012; Mahiny
and Gholamalifard 2007). Efforts have been made to improve SLEUTH, such as
introducing new metrics and functionality (Guan and Clarke 2010; Jantz et al. 2010;
Liu et al. 2012).

Other early urban CA models include those developed by Wu (2002, 1998), Wu
and Webster (1998), and Wu and Martin (2002), in which the probability of urban
development for each cell was calculated based on a group of factors, such as neigh-
borhood. The first urban planning CA models proposed by Li and Yeh (2002b)
and Yeh and Li (2001, 2002) adopted gray cells to represent continuous cell states
and cumulative degrees of development. They developed a family of constrained
CA urban planning models that can be used to generate different planning options
according to different environmental considerations, urban forms, and densities, for
the evaluation of urban development and planning for sustainable development. They
added some constraint functions in CAmodeling that incorporate environmental and
urban-form data obtained from GIS.

The methods of multi-criteria evaluation and logistic regression were first intro-
duced by Wu and Webster (1998) and Wu (2002) to allocate weights to different
factors, which are simpler and require lesser computation compared with Monte
Carlo (Chen et al. 2002). As urban development is a complicated and nonlinear
process, Yeh and Li (2003) proposed to define transition rules using a neural network
as a black box. Instead of mathematical transition rules, Li and Yeh (2004) defined
explicit transition rules using IF–THEN statements, which are straightforward and
intuitive. Several statistical, probabilistic, and artificial-intelligence algorithms were
used to calibrate these types of urban CA models (Wu and Martin 2002; Almeida
et al. 2008; Li and Liu 2006; Feng and Liu 2013).
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Other popular urban CA models were derived from other research fields, such as
DINAMICA, which is a CA-basedmodel originally designed for deforestation simu-
lation (Soares-Filho et al. 2002; Almeida et al. 2003,2005). As a bottom-up dynamic
model, urban CA can be integrated with top-down models to gain complexity
and power. The integration with the Markov approach compensates for its growth
constraints and thus has received much attention recently (Al-Shalabi et al. 2013;
Araya and Cabral 2010; Arsanjani et al. 2011; Li et al. 2014; Memarian et al. 2012;
Samat et al. 2011; Deep and Saklani 2014; Olusina et al. 2014).

45.4 Applications of Urban CA in Urban Planning

The development of CA for urban and regional applications is considerably influ-
enced by the intended use and functionality of models. Urban CAmodels are applied
for exploring spatial complexity, testing urban theories and ideas, and as planning
support tools (Fig. 45.4).

For exploring spatial complexity, urban CAmodels are used to advance the under-
standing of cities as complex adaptive and dynamic systems. Limited adjustments
in the CA formalism are required for the models applied in exploring the principles
governing urban spatial development. CA are the combination of a spatial structure
and a set of states and transition rules. The idea behind CA is to find simple elements
of complexity in cities and to compare these elements with similar models in other
fields. The original work by Tobler and Couclelis in the 1970s and 1980s empha-
sized the conceptual and theoretical aspects of CA and related them to the theory of
complex systems (Tobler 1979; Couclelis 1985). CA were taken as an epistemolog-
ical tool to show how spatial development can be produced out of simple rules. CA
for exploring spatial complexity were further developed along with fractal theory,
chaos, nonlinearity, computer graphics, and complexity (Batty 2007; Torrens and
O’Sullivan 2001).

CA can be used to test theories and ideas of urban development, examining the
roles of complexity in the driving dynamics of urban processes, such as urban sprawl,

Fig. 45.4 Potential applications of urban CA modeling



874 A. G. O. Yeh et al.

diffusion and coalescence, and polycentricism. CA models are used as laboratories
to test theories and ideas in urban economics, geography, and sociology. The formu-
lation of transition rules is the key to developing close and direct links between urban
CA models and urban theories. The transition rules derived from urban theories can
help to explore various hypothetical ideas about cities. The complex relationships
between physical and socio-economic processes and urban environments have been
explored (Alberti 1999; Dietzel et al. 2005). Efforts have been extended to embrace
other urban theories, including urban ecology, design, and sociology (Batty 1998;
Benati 1997; Portugali et al. 1997). These studies have advanced the theoretical basis
of urban CA models. However, CA models of urban theories are often concerned
with details on how to build the model, but fail to explain the theories that they
intended to explore (Torrens and O’Sullivan 2001). Thus, they are interesting but not
well explored in urban CA modeling.

The use of urban CA models as planning support systems requires modifications
of the above two applications of CAmodels to produce more realistic results relevant
to urban planning, management, and policies. These CA models serve as planning
support tools that can assist governments, planners, and stakeholders in evaluating
the social benefits and environmental and ecological consequences of different urban
planning goals, options, and policies. Various urban issues have been addressed in
these types of urban CA models, including the delineation of urban growth bound-
aries, assessment of urban planning options, and prevention of illegal development
(Jantz et al. 2010;Xia et al. 2020a). Despite the fact that urbanCAmodels are increas-
ingly developed in applied research, a gap exists in supporting practical planning of
urban spaces and land uses (Santé et al. 2010).

In addition to using CA as a planning support system to (1) construct baseline
growth simulation and prediction; (2) evaluate existing development as compared
with optimal development; and (3) simulate development alternatives according to
different planning objectives for assisting the urban planning process (Yeh and Li
2009), another example of using CA in urban planning is to delineate urban growth
boundaries (UGBs). UGBs have become an important part of territorial planning
in China. The objective is to ensure smart urban growth, which can increase the
density of urban services and protect surrounding natural ecosystems (Jun 2004).
UGBs have been regarded as an important element in designing land-use plans in
China, although the concept can be traced to Great Britain’s green belts in the 1930s
(Nelson and Moore 1993). China needs to restrain its chaotic urban expansion via
the delineation of UGBs to sustain its shrinking farmland stock.

The designers of UGBs should understand the mechanism of urban dynamics and
consider various geographic factors. These models can assist planners in delimiting
optimal UGBs for directing the future urban expansion from a spatial optimiza-
tion perspective. Traditionally, evaluation models for land-use suitability provide a
simple way for delimiting UGBs (Bhatta 2009). A major problem is that cities are
dynamic systems influenced by anthropogenic activities and natural processes. These
suitability-based methods ignore landscape characteristics during the delineation of
UGBs (Santé et al. 2008). This approach requires efficient and feasible techniques
to delimit those boundaries. CA can satisfy multiple objectives in delineation of
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UGBs, including maximum urban suitability, high-quality farmland preservation to
the greatest extent, and the most compact landscape pattern (Ma et al. 2017; Liang
et al. 2018).

An example is to use the software GeoSOS-FLUS (https://www.geosimulatio
n.cn), which is available on the Internet, to serve as an effective tool to delineateUGB.
The implementation of UGB using GeoSOS-FLUS involves several procedures.
First, we retrieved various spatial variables and historical land-use data for estimating
the transition probability of each land-use type. Second, we defined the simulation
subject to different planning visions according to a number of scenarios, such as base-
line, economic zoning development, and excessive urban growth scenarios. Third,
we carried out the simulation of UGBs on the basis of the above urban development
probability and multi-scenarios constraints, as well other constraint factors. Fourth,
the simulated UGBs can be further modified by using two common morphology
operators, namely, dilation and erosion.

Figure 45.5 shows the example of using GeoSOS-FLUS to simulate UGBs in the
study area ofGuangdong-Hongkong-MacauBayArea (GHMBA),which is one of the
fastest-developing urban agglomerations in China, projected to 2030. This GeoSOS-
FLUS has also been applied to the delineation of UGBs in other fast-growing cities
of China, such as Foshan, Zhengzhou, and Chongqing. The simulated UGBs can be
used to guide future urbanmaster plans, which can prevent wastage of land resources.

Fig. 45.5 Simulation of UGBs in the study area of GHMBA in 2030
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45.5 Discussion and Conclusion

45.5.1 Current Issues in Urban CA Modeling

Urban CA models have strengths and weaknesses. The fast development of urban
CAmodels is mainly due to their simplicity. However, simplicity often limits the CA
capacity to represent realistic urban phenomena, leading to extensive modifications
and introduction of complexity into the model. Questions are raised over whether
these elaborated models actually constitute CA at all, if the relaxations are too much.
Another strength of urban CAmodels is flexibility, which allows them to be adopted
to different applications. However, flexibility may cause confusion and difficulties
for users if there is no standard definition of transition rules. Although difficult,
finding the balance between simplicity and realism, as well as between flexibility
and standardization, is needed. As descriptive models, urban CA models have the
ability to examine hypothetical ideas related to cities. In terms of data requirements,
input data collected for different models can vary greatly. In the past, the software
available for implementing general urban CA models has been very limited and
inconvenient to use; users are usually required to modify or re-design their models
for specific purposes (Xia et al. 2018, 2020b).

In recent years, more user-friendly CA packages have been developed to solve
various simulation and planning problems, such as the CA_MARKOV module
in IDRISI, and GeoSOS. The CA_MARKOV module in IDRISI adopts a hybrid
Markov-CAmodel to allocate land use until the areas that are predicted by aMarkov
chain are achieved (Yang et al. 2014). GeoSOS also provides a variety of CAmodels
(e.g. neural network CA, logistic regression CA, decision tree CA), which can be
freely downloaded at https://www.geosimulation.cn.Moreover, GeoSOS for ArcGIS
(a software add-in that runs in ArcGIS Desktop) has been developed to provide
the full functions of simulating, predicting, optimizing, and displaying a variety of
geographic patterns and dynamic processes, such as land-use changes, urban evolu-
tion, zoning of natural areas for protection, and facilities sitting. As the only soft-
ware integrating spatial simulation and optimization capability together, GeoSOS
for ArcGIS comprises a geographic simulator and optimizer, which use multiple
CA models and ACO-based model, respectively, by coupling their results to solve
complex spatial simulation and optimization problems. GeoSOS for ArcGIS is a
free and open-source software and is also available for freely downloading at the
GeoSOS Web site (https://www.geosimulation.cn). So far, this ArcGIS Desktop
added-in component has been downloaded by users in 46 countries all round the
world.

The current literature on CA applications reflects problems that have arisen from
researchers who just applied CA, but were not familiar with the CA models them-
selves. First, many users have claimed that their simulation results can support urban
planning and management without offering good examples of real-world applica-
tions. Successful applications should demonstrate that governments or planners can
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make better decisions due to the use of CA models. Second, many users have diffi-
culty in obtaining details of the input data, especially the dates in acquiring them. In
some cases, the present road network that was built after the simulated period was
used in the simulation, making the simulation somewhat questionable. Third, they
evaluated their simulation results by comparing the simulated map to the reference
map of the entire study area, but failed to compare the percentage of errors to the
percentageof converted areas (Liu et al. 2014; Pontius andMillones 2011). Therefore,
they used flawed metrics for assessing model performance such as the goodness-of-
fit (Pontius and Millones 2011). Finally, they just separated calibration information
fromvalidation information through space (by selecting pixels randomly), rather than
through time (by using an urban map in another year), leading to overestimation of
the accuracy of the model.

45.5.2 Summary and Future Research Directions

This chapter has summarized the basic concepts and techniques of CA modeling for
urban and regional planning from the perspectives of basic CA components, formu-
lation of urban CA, and data collection. Urban CA were classified into different
types, and systematic and critical reviews on previous and recent studies and appli-
cations were provided. Finally, the strengths and weaknesses of urban CA models
were pointed out for new modelers, along with current problems in the literature.

Further studies are needed to provide new insights into the uses of CA in
geographic and urban theories, which would advance the theoretical basis of urban
CA. The integration of urban CAmodels and other models may overcome the weak-
nesses of CA, such as with economic models, thus improving model performance.
More effort should be made on improving CA by incorporating microlevel interac-
tions and multiple processes. So far, the calibration is often based on two years of
land-use maps. There is an issue of over-calibration because of bifurcation effects
inherited from complex systems. Bifurcation refers to the fact that a small smooth
change in the parameter values may cause a sudden change in the model’s behavior.
Finally, elaboration is also required to demonstrate howurbanCAmodels can support
planning and management in practice. Urban CA models should not be used to
provide exact predictions of urban systems, but to simulate interactively different
what-if scenarios for policy implementation through the modification of transition
rules.

Concern for global changes has grown tremendously in recent years. CA should
incorporate factors of climate change in urban planning, such as the effects of urban
heat islands, changes in agricultural production, and changes in land-use patterns.
CA simulation could be integrated with climate and hydrological models in future
studies (Chen et al. 2020). For example, urban simulation could incorporate the
universal climate scenarios developed by the Intergovernmental Panel on Climate
Change, such that future land use can meet the demand required by economic and
social development. This integration can facilitate the simulation of future changes



878 A. G. O. Yeh et al.

in global and regional land covers. For example, the simulation of urban evolution
with finer urban land categories should be attractive for actual planning practice.
This requires the integration of current CA with big data or social media data.
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